Oregon News

Nanotechnology, messenger RNA combined in possible new ‘universal’ COVID-19 treatment

Share this article

By Steve Lundeberg, 541-737-4039, [email protected]

Source: Gaurav Sahay, 503-346-4698, [email protected]

This news release is available online: https://beav.es/5iN

Graphic illustration: https://flic.kr/p/2nSQrYB

PORTLAND, Ore. – A study led by an Oregon State University pharmaceutical sciences researcher has produced a proof of principle for a new “universal” means of treating COVID-19.

Gaurav Sahay and collaborators at OSU and the Texas Biomedical Research Institute demonstrated in a mouse model that it’s possible to prompt the production of a protein that can block multiple variants of the SARS-CoV-2 virus from entering cells and causing respiratory disease.

“Rather than messenger RNA as a vaccine, this shows that mRNA can be used as a universal therapy against different coronaviruses,” Sahay said. “Despite mass vaccination, there is an urgent need to develop effective treatment options to end this pandemic. Several therapies have shown some effectiveness, but the virus’ high mutation rate complicates the development of drugs that treat all variants of concern.”

Findings were published in ACS Nano. Next steps involve showing that the protein prevents infection in mice, said Sahay, who added that the mRNA treatment is possibly “a couple of years” away from being available to human patients.

Breathing in the virus is the primary way to contract COVID-19, blamed for 6 million deaths globally since the pandemic began in late 2019. The virus’ envelope is covered in spike proteins that bind to an enzyme produced by cells in the lungs.

Using messenger RNA packaged in lipid nanoparticles, the scientists showed in the mouse model that host cells can produce a “decoy” enzyme that binds to coronavirus spike proteins, meaning the virus shouldn’t be able to latch onto cells in the host’s airway and start the infection process.

The study, which involved messenger RNA that was administered intravenously and also through inhalation, which would be the preferred delivery method for humans, was published in Advanced Science.

“Proteins are large, complex molecules that serve as the workhorses of cells, enabling all of the biological functions within a cell,” said Sahay, an associate professor in the OSU College of Pharmacy. “DNA holds the blueprints from which proteins get made after the code is first transcribed into messenger RNA.”

An enzyme is a type of protein that acts as a catalyst for biochemical reactions. HACE2 – short for human angiotensin-converting enzyme 2 – is an enzyme of the airway cells. It is also expressed in the heart, kidney and intestine, and has a hand in numerous physiological functions.

Simply giving a COVID-19 patient hACE2 would have limited effectiveness in treating the disease, Sahay said, because the soluble form of the enzyme, the kind that can circulate throughout the body, has a short half-life – less than two hours, meaning it wouldn’t stay in a person’s system very long.

But lipid nanoparticles, often abbreviated to LNP, containing mRNA that orders production of the enzyme can help overcome that problem.

In this study, the researchers engineered synthetic mRNA to encode a soluble form of the enzyme, packaged the mRNA into lipid nanoparticles and delivered it to cells in the liver with an IV; within two hours, the enzyme was in the mice’s bloodstream, and it stayed there for days.

The scientists also delivered the loaded LNP via inhalation, prompting epithelial cells in the lungs to secrete soluble hACE2.

“The soluble enzyme effectively inhibited live SARS-CoV-2 from infecting host cells,” said OSU postdoctoral researcher Jeonghwan Kim. “The synthesis of mRNA is fast, affordable and scalable, and LNP-delivered mRNA can be repeated as necessary to sustain protein production until the infection subsides. Once treatment stops, the no-longer-needed soluble hACE2 clears the system in a matter of days.”

In addition to Sahay, other Oregon State scientists contributing to the research were Jeonghwan Kim, Antony Jozic, Anindit Mukherjee and Dylan Nelson. The studies with the live virus were performed in collaboration with Texas Biomedical Research Institute scientists Kevin Chiem, Md Siddiqur Rahman Khan Jordi B. Torrelles, and Luis Martinez-Sobrido

Funding from the OSU College of Pharmacy supported this study. Sahay lab is supported through funding from NIH and Cystic Fibrosis Foundation.

 

Comments are closed.

Lane County Libraries The Power of Partnership throughout Lane County Oregon

graphic: Classifieds

GARAGE SALE: Tell folks about your upcoming garage sale here.

LANDSCAPING SERVICES:  It’s that time of year.  Let everyone know what services you have to offer.

JOB OPENINGS: Need to let the community know that you need help. Post your job openings here.

 

OFFICE SERVICES AVAILABLE:  Copying, Scanning, Emailing & Faxing Services are now available at The Herald’s office in Oakridge.
CLICK HERE for details.

graphic: Classified Ad Posting is Now Available - For Sale • Help Wanted • Landscaping • Rentals • Homes for sale • Repairs • Remodeling • and More! - Post your classified ad with us today.

Public and Legal Notices Lane County Highway 58 Oregon

Oakridge City Council PUBLIC NOTICE – Public Hearings on Proposed City Charter Revisions

PUBLIC NOTICE
Storage Auction
Boxworth Enterprises, LLC
48116 Highway 58
Oakridge, OR 97463
AUCTION AT
Security 58 Storage
48543 Highway 58
Oakridge, OR 97463
July 11th, at 11:00 am
Kristi Ledbetter
Unit6-4
$100 cash refundable deposit required Highway 58 Herald 06/20/24 & 06/27/2024

PUBLIC NOTICE
Storage Auction
Boxworth Enterprises, LLC
48116 Highway 58
Oakridge, OR 97463
AUCTION AT
Security 58 Storage
48543 Highway 58
Oakridge, OR 97463
July 11th, at 11:00 am
Ike Smith
Units 1-5 & 4-7
$100 cash refundable deposit required Highway 58 Herald 06/20/24 & 06/27/2024

NOTICE OF ELECTION OF MAYOR AND CITY COUNCIL MEMBERS CITY OF WESTFIR

 

Public and Legal Notices Lane County Highway 58 Oregon

Follow H58H on Social Media

The calendar is temporarily disabled due to a rendering error. Please reload the page.